10,550 research outputs found

    Ultraviolet/X-ray variability and the extended X-ray emission of the radio-loud broad absorption line quasar PG 1004+130

    Full text link
    We present the results of recent Chandra, XMM-Newton, and Hubble Space Telescope observations of the radio-loud (RL), broad absorption line (BAL) quasar PG 1004+130. We compare our new observations to archival X-ray and UV data, creating the most comprehensive, high signal-to-noise, multi-epoch, spectral monitoring campaign of a RL BAL quasar to date. We probe for variability of the X-ray absorption, the UV BAL, and the X-ray jet, on month-year timescales. The X-ray absorber has a low column density of NH=8×10204×1021N_{H}=8\times10^{20}-4\times10^{21} cm2^{-2} when it is assumed to be fully covering the X-ray emitting region, and its properties do not vary significantly between the 4 observations. This suggests the observed absorption is not related to the typical "shielding gas" commonly invoked in BAL quasar models, but is likely due to material further from the central black hole. In contrast, the CIV BAL shows strong variability. The equivalent width (EW) in 2014 is EW=11.24±\pm0.56 \AA, showing a fractional increase of ΔEW/EW\Delta EW / \langle EW \rangle=1.16±\pm0.11 from the 2003 observation, 3183 days earlier in the rest-frame. This places PG 1004+130 among the most highly variable BAL quasars. By combining Chandra observations we create an exposure 2.5 times deeper than studied previously, with which to investigate the nature of the X-ray jet and extended diffuse X-ray emission. An X-ray knot, likely with a synchrotron origin, is detected in the radio jet ~8 arcsec (30 kpc) from the central X-ray source with a spatial extent of ~4 arcsec (15 kpc). No similar X-ray counterpart to the counterjet is detected. Asymmetric, non-thermal diffuse X-ray emission, likely due to inverse Compton scattering of Cosmic Microwave Background photons, is also detected.Comment: 15 pages, 7 figures, 3 tables. Accepted for publication in Ap

    Debt maturity, risk, and asymmetric information

    Get PDF
    We test the implications of Flannery’s (1986) and Diamond’s (1991) models concerning the effects of risk and asymmetric information in determining debt maturity, and we examine the overall importance of informational asymmetries in debt maturity choices. We employ data from more than 6,000 commercial loans from 53 large U.S. banks. Our results for low-risk firms are consistent with the predictions of both theoretical models, but our findings for high-risk firms conflict with the predictions of Diamond’s model and with much of the empirical literature. Our findings also suggest a strong quantitative role for asymmetric information in explaining debt maturity.

    Why do borrowers pledge collateral? new empirical evidence on the role of asymmetric information

    Get PDF
    An important theoretical literature motivates collateral as a mechanism that mitigates adverse selection, credit rationing, and other inefficiencies that arise when borrowers hold ex ante private information. There is no clear empirical evidence regarding the central implication of this literature—that a reduction in asymmetric information reduces the incidence of collateral. We exploit exogenous variation in lender information related to the adoption of an information technology that reduces ex ante private information, and compare collateral outcomes before and after adoption. Our results are consistent with this central implication of the private-information models and support the empirical importance of this theory.

    Assessment of different modelling studies on the spatial hydrological processes in an arid alpine catchment

    Get PDF
    To assess the model description of spatial hydrological processes in the arid alpine catchment, SWAT and MIKE SHE were jointly applied in Yarkant River basin located in northwest China. Not only the simulated daily discharges at the outlet station but also spatiotemporal distributions of runoff, snowmelt and evapotranspiration were analyzed contrastively regarding modules' structure and algorithm. The simulation results suggested both models have their own strengths for particular hydrological processes. For the stream runoff simulation, the significant contributions of lateral interflow flow were only reflected in SWAT with a proportion of 41.4 %, while MIKE SHE simulated a more realistic distribution of base flow from groundwater with a proportion of 21.3 %. In snowmelt calculation, SWAT takes account of more available factors and got better correlations between snowmelt and runoff in temporal distribution, however, MIKE SHE presented clearer spatial distribution of snowpack because of fully distributed structure. In the aspect of water balance, less water was evaporated because of limitation of soil evaporation and less spatially distributed approach in SWAT, on another hand, the spatial distribution of actual evapotranspiration (ETa) in MIKE SHE clearly expressed influence of land use. Whether SWAT or MIKE SHE, without multiple calibrations, the model's limitation might bring in some biased opinions of hydrological processes in a catchment scale. The complementary study of combined results from multiple models could have a better understanding of overall hydrological processes in arid and scarce gauges alpine region

    DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects

    Get PDF
    Topography and land cover characteristics can have significant effects on infiltration, runoff, and erosion processes on watersheds. The ability to model the timing and routing of surface water and erosion is affected by the resolution of the digital elevation model (DEM). High resolution ground-based Light Detecting and Ranging (LiDAR) technology can be used to collect detailed topographic and land cover characteristic data. In this study, a method was developed to remove vegetation from ground-based LiDAR data to create high resolution DEMs. Research was conducted on intensively studied rainfall–runoff plots on the USDA-ARS Walnut Gulch Experimental Watershed in Southeast Arizona. LiDAR data were used to generate 1 cm resolution digital surface models (DSM) for 5 plots. DSMs created directly from LiDAR data contain non-surface objects such as vegetation cover. A vegetation removal method was developed which used a slope threshold and a focal mean filter method to remove vegetation and create bare earth DEMs. The method was validated on a synthetic plot, where rocks and vegetation were added incrementally. Results of the validation showed a vertical error of ±7.5 mm in the final DEM

    A spatially explicit degree-day model of Rift Valley fever transmission risk in the continental United States

    Get PDF
    A spatially explicit degree-day model was used to evaluate the risk of Rift Valley fever virus (RVFV) transmission by mosquitoes to humans and livestock within five target states in the continental United States: California, Minnesota, Nebraska, New York, and Texas. A geographic information system was used to model potential virus transmission based on a 12-day moving window assessment of the extrinsic incubation period theorized for RVFV in the United States. Risk of potential virus transmission in each state was spatially evaluated on a 10-km grid using average historical daily temperature data from 1994 to 2003. The highest levels of transmission risk occur in California and Texas, with parts of these states at risk of RVFV transmission for up to 8 months per year. Northern Minnesota, central New York, and most of coastal and high-elevation California are at low to null risk. Risk of impact to the livestock industry is greatest in California, Texas, and Nebraska. A standard global climate model was used to evaluate future risk in the year 2030 in Nebraska, and showed an increase of transmission risk days from approximately 3 to 4 months per year

    Changing the Ties That Bind? The Emerging Roles and Identities of General Practitioners and Managers in the New Clinical Commissioning Groups in the English NHS

    Get PDF
    The English National Health Service (NHS) is undergoing significant reorganization following the 2012 Health and Social Care Act. Key to these changes is the shift of responsibility for commissioning services from Primary Care Trusts (PCTs) to general practitioners (GPs) working together in Clinical Commissioning Groups (CCGs). This article is based on an empirical study that examined the development of emerging CCGs in eight case studies across England between September 2011 and June 2012. The findings are based on interviews with GPs and managers, observations of meetings, and reading of related documents. Scott’s notion that institutions are constituted by three pillars—the regulative, normative, and cognitive–cultural—is explored here. This approach helps to understand the changing roles and identities of doctors and managers implicated by the present reforms. This article notes the far reaching changes in the regulative pillar and questions how these changes will affect the normative and cultural–cognitive pillars

    Einstein Cluster Alignments Revisited

    Get PDF
    We have examined whether the major axes of rich galaxy clusters tend to point toward their nearest neighboring cluster. We have used the data of Ulmer, McMillan, and Kowalski, who used position angles based on X-ray morphology. We also studied a subset of this sample with updated positions and distances from the MX Northern Abell Cluster Survey (for rich clusters (R1R \geq 1) with well known redshifts). A Kolmogorov-Smirnov (KS) test showed no significant signal for nonrandom angles on any scale 100h1\leq 100h^{-1}Mpc. However, refining the null hypothesis with the Wilcoxon rank-sum test, we found a high confidence signal for alignment. Confidence levels increase to a high of 99.997% as only near neighbors which are very close are considered. We conclude there is a strong alignment signal in the data, consistent with gravitational instability acting on Gaussian perturbations.Comment: Minor revisions. To be published in Ap
    corecore